Gadalah konstanta umum gravitasi yang besarnya G = 6,6720-11 Nm 2 kg 2.Gaya ini selalu tarik-menarik, ditunjukan oleh vektor satuan ( r ), khusunya bila M adalah bumi, maka gaya F disebut berat benda dan biasanya diberi simbol W. Bila benda hanya berada disekitar permukaan bumi, maka r dapat dikatakan sebagai jari-jari bumi, sehingga besaran-besaran ilustrasi gaya gravitasi, sumber gambar gravitasi merupakan salah satu gaya yang terjadi di alam semesta. Gaya gravitasi bersifat mengikat pada setiap planet yang ada di tata surya. Sehingga, planet-planet tetap dapat mengelilingi Matahari dan mencegahnya untuk saling buku Hole of Fire Revolusi Teori Gravitasi dari Akar-akarnya 2019, gaya gravitasi merupakan besarnya gaya tarik menarik setiap benda yang setara dengan besarnya gaya dengan masing-masing benda. Gaya gravitasi juga berbanding terbalik dengan kuadrat jarak antarbenda gaya gravitasi adalah suatu gaya benda bermassa yang dapat menarik benda lain agar menuju pusatnya. Sadar atau tidak, gaya gravitasi selalu kita alami dan terjadi di kehidupan dapat memahami gaya gravitasi lebih detail, kamu bisa melakukan sebuah eksperimen sederhana pada sebuah koin. Lemparkan koin ke atas dan koin akan jatuh dengan cepat. Koin tersebut dapat jatuh karena adanya gaya gravitasi bumiGaya gravitasi bumi mampu menarik seluruh benda yang ada di permukaan Bumi menuju pusatnya. Hal ini menyebabkan semua benda dapat terjatuh ke bawah atau ke arah pusat kecepatan jatuhnya sebuah benda berbeda-beda karena tergantung massanya. Jika benda yang jatuh semakin berat, maka semakin cepat pula gaya gravitasinya. Begitu pula jika benda yang jatuh memiliki massa yang ringan, maka semakin lambat pula gaya Fenomena Gravitasiilustrasi gaya gravitasi, sumber gambar saja contoh fenomena gaya gravitasi yang terjadi di alam semesta ini? Simak penjelasan ya di bawah iniBenda-benda luar angkasa akan tetap berada pada posisinya atau melayang karena di sana tidak ada gaya yang dilempar selalu jatuh ke dapat berdiri tegak di permukaan dapat tidur di atas kasur dengan tenang. Adapun astronot yang berada di luar angkasa harus diikat dulu jika ingin tidur. Hal ini karena astronot akan melayang-layang dan menabrak banyaj benda saat tidur karena tidak ada gravitasi. AYUNANSEDERHANA DAN HUKUM HOOKE. DISUSUN OLEH : NAMA : Dewi Agustiyani Gadis R. benda juga berubah dalam besar dan arah. Selama benda bergetar, ada kecenderungan untuk kembali ke posisi setimbang. Untuk itu ada gaya yang bekerja pada benda untuk mengembalikan benda ke posisi setimbang. Periode adalah selang waktu yang

PertanyaanDi suatu tempat di bumi yang percepatan gravitasinya 9,8 m/s 2 , sebuah ayunan sederhana memiliki periode 4 detik. Berapakah panjang tali ayunan tersebut?Di suatu tempat di bumi yang percepatan gravitasinya 9,8 m/s2, sebuah ayunan sederhana memiliki periode 4 detik. Berapakah panjang tali ayunan tersebut? 1 m 2 m 3 m 4 m 5 m UAMahasiswa/Alumni Universitas Islam Negeri Sunan Gunung Djati BandungJawabanjawabannya adalah adalah D. PembahasanDiketahui. g =9,8 m/s 2 T = 4 detik Ditanyakan l .. . ? Penyelesaian Panjang tali ayunan tersebut adalah kuadratkan kedua ruas, sehingga diperoleh Jadi hasilnya adalah 3,97 m dibulatkan menjadi 4 m. Oleh karena itu, jawabannya adalah g = 9,8 m/s2 T = 4 detik Ditanyakan l ... ? Penyelesaian Panjang tali ayunan tersebut adalah kuadratkan kedua ruas, sehingga diperoleh Jadi hasilnya adalah 3,97 m dibulatkan menjadi 4 m. Oleh karena itu, jawabannya adalah D. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!

Gayagaya yang bekerja pada ayunan sederhana adalah gaya tarik T dan gaya berat mg pada massa m Jadi untuk simpangan yang kecil, gaya pembalik adalah sebanding dengan Unduh PDF Unduh PDF Gravitasi adalah salah satu gaya mendasar dalam fisika. Aspek terpenting dari gravitasi adalah bahwa gaya ini universal semua objek memiliki gaya gravitasi yang menarik objek-objek lain. [1] Besarnya gaya gravitasi bergantung pada massa dan jarak di antara kedua objek. [2] 1 Definisikan persamaan gaya gravitasi yang menarik sebuah objek, Fgrav = Gm1m2/d2.[3] Untuk dapat menghitung gaya gravitasi sebuah benda, persamaan ini turut memperhitungkan massa kedua objek dan jaraknya satu sama lain. Variabel persamaan dijelaskan di bawah ini. Fgrav adalah gaya gravitasi G adalah konstanta gravitasi universal 6,673 x 10-11 Nm2/kg2[4] m1 adalah massa objek pertama m2 adalah massa objek kedua d adalah jarak distance antara pusat dari kedua objek Terkadang Anda menemukan huruf r alih-alih d. Kedua simbol ini mewakili jarak antara kedua objek. 2Gunakan unit metrik yang sesuai. Untuk persamaan ini, Anda harus menggunakan satuan metrik. Massa objek harus dalam kilogram kg dan jarak antarobjek harus dalam meter m. Anda harus mengubah unit ke dalam satuan metrik ini sebelum melanjutkan 3Tentukan massa objek yang dipertanyakan. Untuk objek kecil, Anda bisa menimbangnya untuk mengetahui beratnya dalam kilogram. Untuk benda besar, Anda bisa mencari massa kira-kira di tabel atau internet. Dalam soal fisika, biasanya massa objek akan diberi tahu. 4 Ukur jarak antara dua objek. Jika Anda mencoba menghitung gaya gravitasi antara suatu objek dan bumi, Anda perlu mengetahui berapa jarak benda ini dari pusat bumi. [5] Jarak dari permukaan bumi ke pusat bumi adalah sekitar 6,38 x 106 m.[6] Anda bisa mencarinya di tabel atau sumber lain di internet yang memberitahukan jarak kira-kira dari pusat bumi ke objek di berbagai ketinggian pada permukaan bumi. [7] 5 Selesaikan perhitungan. Jika Anda telah menentukan variabel-variabel pada persamaan, silakan memasukkannya untuk diselesaikan. Pastikan semua variabel dalam unit metrik dan skalanya tepat. Massa harus dalam kilogram dan jarak harus dalam meter. Selesaikan persamaan dengan urutan perhitungan yang benar. Sebagai contoh, tentukan gaya gravitasi seseorang yang massanya 68 kg di atas permukaan bumi. Massa bumi adalah 5,98 x 1024 kg.[8] Pastikan semua variabel dalam satuan yang benar. m1 = 5,98 x 1024 kg, m2 = 68 kg, G = 6,673 x 10-11 Nm2/kg2, and d = 6,38 x 106 m Tuliskan persamaan Anda Fgrav = Gm1m2/d2 = [6,67 x 10-11 x 68 x 5,98 x 1024]/6,38 x 1062 Kalikan massa kedua objek yang diperhitungkan. 68 x 5,98 x 1024 = 4,06 x 1026 Kalikan hasil m1 and m2 dengan konstanta gravitasi G. 4,06 x 1026 x 6,67 x 10-11 = 2,708 x 1016 Kuadratkan jarak antara kedua objek. 6,38 x 1062 = 4,07 x 1013 Bagikan hasil G x m1 x m2 dengan jarak yang dikuadratkan untuk memperoleh gaya gravitasi dalam satuan Newton N. 2,708 x 1016/4,07 x 1013 = 665 N Gaya gravitasinya adalah 665 N. Iklan 1 Pahami Hukum Kedua Newton, F = ma. Hukum kedua Newton menyatakan bahwa percepatan sebuah objek berbanding lurus dengan gaya total yang bekerja padanya dan berbanding terbalik dengan massanya. [9] Dengan kata lain, jika sebuah gaya yang bekerja pada sebuah objek lebih besar daripada gaya yang bekerja pada arah yang berlawanan, objek akan bergerak mengikuti gaya yang lebih kuat. Hukum ini dapat disimpulkan dengan persamaan F = ma, yaitu F adalah gaya, m adalah massa objek, dan a adalah percepatan. Berkat hukum ini, kita dapat menghitung gaya gravitasi semua objek di atas permukaan bumi, menggunakan percepatan yang diketahui akibat gravitasi. 2 Ketahui percepatan akibat gravitasi bumi. Di bumi, gaya gravitasi menyebabkan semua objek mengalami percepatan sebesar 9,8 m/s2. Pada permukaan bumi, kita dapat menggunakan persamaan yang disederhanakan Fgrav = mg untuk menghitung gaya gravitasi. Jika ingin mengetahui angka gaya gravitasi yang lebih tepat, Anda masih bisa menggunakan rumus di langkah sebelumnya, Fgrav = GMbumim/d2 untuk menentukan gaya gravitasi. 3Gunakan unit metrik yang sesuai. Untuk persamaan ini, Anda harus menggunakan satuan metrik. Massa objek harus dalam kilogram kg dan jarak antarobjek harus dalam meter m. Anda harus mengubah unit ke dalam satuan metrik ini sebelum melanjutkan. 4Tentukan massa objek yang dipertanyakan. Untuk objek kecil, Anda bisa menimbangnya untuk mengetahui beratnya dalam kilogram. Untuk benda besar, Anda bisa mencari massa kira-kira di tabel atau internet. Dalam soal fisika, biasanya massa objek akan diberi tahu. 5 Selesaikan perhitungan. Jika Anda telah menentukan variabel-variabel pada persamaan, silakan memasukkannya untuk diselesaikan. Pastikan semua variabel dalam unit metrik dan skalanya tepat. Massa harus dalam kilogram dan jarak harus dalam meter. Selesaikan persamaan dengan urutan perhitungan yang benar. Ayo kita coba gunakan persamaan di langkah sebelumnya dan melihat seberapa dekat hasilnya. Tentukan gaya gravitasi seseorang bermassa 68 kg yang berada di permukaan bumi. Pastikan semua variabel dalam unit yang benar m = 68 kg, g = 9,8 m/s2. Tuliskan rumus. Fgrav = mg = 68*9,8 = 666 N. Menggunakan rumus F = mg gaya gravitasi adalah sebesar 666 N, sementara hasil dari rumus di langkah sebelumnya adalah 665 N. Seperti yang Anda lihat, hasil keduanya hampir sama. Iklan Dua rumus ini seharusnya memberikan jawaban yang sama, tetapi rumus yang lebih pendek dan sederhana lebih mudah digunakan saat membahas objek di permukaan planet. Gunakan rumus pertama jika Anda tidak mengetahui percepatan akibat gravitasi di suatu planet, atau Anda menghitung gaya gravitasi antara dua objek yang sangat besar, misalnya bulan atau planet. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda? Misalnyadua gaya gravitasi F12 dan F13 yang dimiliki benda bermassa m2 dan m3 bekerja pada benda bermassa m1, maka resultan gaya gravitasi pada m1, yaitu F1 adalah: F1 = F12 + F13 Besar resultan Saat kamu kecil, pasti kamu pernah bermain ayunan kan? Ayunan adalah salah satu contoh penerapan gaya loh.. Memangnya apa itu gaya? Apa saja jenisnya? Bagaimana pengaruhnya terhadap benda-benda lain seperti ayunan tadi? Apakah dengan bermain ayunan, kita jadi tambah gaya? — Sebelum membahas ke sana, kita harus tahu dulu pengertian gaya. Kalian tahu nggak sih guys apa itu gaya? Apakah gaya yang dimaksud seperti style berpakaian yang oke? hehehe. Jawabannya tentu bukan yah! Yuk kita bahas lebih detail supaya kalian lebih paham! Simak baik-baik yaahhh… Pengertian Gaya Sederhananya, gaya adalah segala bentuk interaksi yang dapat mempengaruhi kondisi dari suatu benda. Saat bermain ayunan, tentu kita membutuhkan orang lain yang mendorong kita. Nah kegiatan “mendorong ayunan”, merupakan contoh gaya. Nama gayanya, adalah gaya dorong. Tapi, kira-kira apa saja ya pengaruh gaya terhadap kondisi benda? Pengaruh Gaya terhadap Benda Dalam ilmu fisika, ada 5 pengaruh gaya terhadap benda Untuk mengetahui pengaruh apa saja yang diakibatkan gaya kepada benda, yuk kita berjalan-jalan sebentar sambil berimajinasi. Jadi, siapkan imajinasimu ya! Gaya Menggerakkan Benda Diam Pertama, bayangkan kamu dan ayahmu sedang di garasi rumah. Kalian hendak pergi piknik ke taman kota nih. Sayangnya, bensin mobil habis. Akhirnya, ayahmu mendorong mobil tersebut sampai pom bensin yang ada di seberang rumahmu. Nah, kegiatan memberikan gaya berupa “mendorong mobil” dari yang semula “diam” di garasi ke pom bensin itu berarti, gaya dapat menggerakkan benda yang diam. Gaya dorong membuat mobil yang semula diam menjadi bergerak sumber Gaya Menghentikan Benda Bergerak Setelah mengisi bensin, kamu dan ayahmu melanjutkan perjalanan. Saat bertemu lampu merah, ayahmu menginjak pedal rem, sehingga mobil berhenti. Itu artinya, gaya yang diberikan dari kaki kepada pedal rem akan membuat sebuah benda yang sebelumnya bergerak menjadi berhenti. Baca juga Contoh Jenis Gaya dalam Hukum Newton Gaya Mengubah Kecepatan Benda Tidak hanya menghentikan gerakan benda saja, dengan memberikan suatu gaya pada benda, kita juga bisa mengubah kecepatan gerak benda itu, lho. Ketika ayahmu mengendarai mobil, injakan kaki pada pedal gas akan memberikan gaya kepada gerakan roda di bawah. Semakin dalam injakan pedal gas tersebut, tentu akan meningkatkan kecepatan si mobil, kan. Artinya, gaya dapat mengubah kecepatan suatu benda. Gaya Mengubah Arah Gerak Benda Kamu dan ayahmu masih di jalanan lengang. Dia terus menginjak pedal gas. Mobil dalam kecepatan tinggi. Tiba-tiba di depan ada seekor anak kucing melintas. Ayahmu lantas memutar setir ke kanan dengan cepat. Apa yang terjadi ketika setir mobil diputar? Setirnya copot? hehe. Bukan, setirnya bukan copot, kok. Kan bukan mur. Ayahmu memberikan gaya berupa “memutar setir mobil ke kanan”, yang membuat mobil tersebut akan berbelok ke arah kanan. Itu artinya, gerakan mobil yang semula lurus, akan “berubah” akibat adanya gaya dari putaran setir oleh ayahmu. Arah gerak mobil berubah akibat gaya sumber Gaya Mengubah Bentuk Benda Karena belokan yang tiba-tiba tadi, tidak sengaja bagian bumper belakang mobilmu menabrak tempat sampah di pinggir jalan. Ayahmu menghentikan mobil. Kamu keluar dan melihat kalau saat ini, tempat sampah tersebut sudah rusak dan bagian tutupnya penyok. Itu artinya, gaya “tabrakan antara mobil dan tempat sampah” menyebabkan perubahan bentuk pada tempat sampah. Dari yang semula berbentuk kotak menjadi penyok di bagian atas. Itu artinya, gaya dapat mengubah bentuk sebuah benda. Nah, itu tadi 5 pengaruh gaya yang berpengaruh terhadap kondisi benda. Tapi sebenarnya masih banyak lagi, loh. Pengaruh gaya lainnya tentu dipengaruhi oleh jenis gayanya, yah. Eh, tapi emang gaya itu banyak jenisnya, yah? Baca Juga Apa itu Pengertian Gaya Sentripetal dan Sentrifugal? Jenis Gaya Secara umum, jenis gaya dibagi menjadi dua, yaitu gaya sentuh dan gaya tak sentuh. Apa sih perbedaan keduanya? Yuk kita bahas satu per satu! Gaya Sentuh Gaya sentuh merupakan gaya yang terjadi ketika sumber gaya bersentuhan langsung dengan objek penerima gaya. Gaya yang termasuk dalam jenis gaya sentuh diantaranya, gaya normal, gaya gesek, dan gaya pegas. Yuk kita bahas singkat ketiga gaya ini! 1. Gaya Normal Gaya normal merupakan gaya yang bekerja pada dua benda yang saling bersentuhan, dimana arah gayanya selalu tegak lurus dengan permukaan bidang sentuh. Contoh gaya normal adalah saat kamu bersandar ke arah dinding. Maka, dinding akan memberikan dorongan secara horizontal yang disebut sebagai gaya normal pada tubuhmu yang sedang bersandar tersebut. 2. Gaya Gesek Gaya gesek terjadi ketika dua permukaan benda saling bersentuhan. Arah dari gaya gesek selalu berlawanan dengan kecenderungan arah gerak benda. Contohnya, saat kamu mendorong meja ke arah kanan, maka diantara kaki meja dan lantai muncul gaya gesek ke kiri. 3. Gaya Pemulih pada Pegas Gaya pemulih pada pegas adalah gaya yang menyebabkan benda bergerak menuju titik keseimbangannya kembali setelah mengalami simpangan pada gerak harmonik. Contohnya, saat kamu melompat di spring bed maka akan muncul gaya pemulih pada pegas yang mendorong kamu ke atas. Baca Juga Yuk Simak Contoh Jenis Gaya dalam Hukum Newton! Gaya Tak Sentuh Kebalikan dari gaya sentuh, gaya tak sentuh merupakan gaya yang terjadii ketika sumber gaya tidak bersentuhan langsung dengan objek penerima gaya. Gaya yang termasuk dalam jenis gaya ini diantaranya, gaya gravitasi, gaya magnet, dan gaya listrik. Yuk kita bahas! 1. Gaya Gravitasi Gaya gravitasi antara dua buah benda merupakan gaya tarik-menarik antara dua buah benda bermassa. Contohnya nih, kalau kita tinjau bumi, gaya gravitasi bumi membuat buah di atas pohon jatuh ke bawah. 2. Gaya Magnet Gaya magnet merupakan gaya yang timbul akibat adanya medan magnet. Misalnya, saat besi yang didekatkan pada sebuah magnet, maka besi tersebut akan ditarik oleh magnet. 3. Gaya Listrik Gaya listrik dialami oleh objek bermuatan yang berada dalam medan listrik. Misalnya, saat muatan elektron dan elektron berdekatan maka kedua muatan ini akan saling tolak menolak. Nah, itulah penjelasan tentang gaya, pengaruh gaya terhadap kondisi benda, dan jenis-jenis gaya, yah. Kalau kamu ingin mempelajari materi lebih lanjut dalam bentuk video animasi, yuk tonton lewat ruangbelajar! Gayapemulih yang menjadikan gerak sistem ini harmonis adalah gaya gravitasi yang menuju titik kesetimbangan. Tentunya besaran lain seperti frekeunsi getar dan periode getar juga muncul ABSTRAK Percobaan ayunan sederhana merupakan percobaan dengan menggunakan prinsip getaran dan gelombang. Materi ini termasuk dalam kurikulum peserta didik sekolah menengah pertama. Percobaan ayunan sederhana memiliki tujuan untuk menentukan besar gaya gravitasi dan massa bumi. Dalam ayunan sederhana ini menggunakan sudut simpangan sebesar 50. Besar gaya gravitasi yang diperoleh dari pecobaan ini sebesar 9,65 0,05 m/s2 dengan kesalahan relative dan ketelitian sebesar 0,05% dan 99,95%. Besar massa bumi yang diperoleh sebesar 5,93 x 10 24 kg kesesatan sebesar 0,5% dan ketepatan sebesar 99,5%. ABSTRACT Swing mathematical experiment is an experiment using the principle of vibrations and waves. This material is included in the curriculum of secondary school learners. Swing mathematical experiment has the objective to determine the gravity and mass of the earth. In this simple swing using the angle deviation of obtained from this experiment of ± m / s2 with relative error and accuracy of and A large mass of earth obtained at x 10 24 kg astray by and accuracy of PENDAHULUAN Bila suatu benda bergerak bolak balik terhadap suatu titik tertentu, maka benda tersebut dinamakan bergetar, atau benda tersebut bergetar. Dalam ilmu fisika dasar, terdapat beberapa kasus bergetar, diantaranya adalah gerak harmonic sederhana. Gerak Harmonik Sederhana GHS adalah gerak bolak – balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getraran benda dalam setiap detik selalu konstan. Gerak Harmonik Sederhana terjadi karena gaya pemulih restoring force. Dinamakan gaya pemulih karena gaya ini selalu melawan perubahan posisi benda agar kembali ke titik setimbang. Karena itulah terjadi gerak harmonik. Pengertian sederhana adalah bahwa kita menganggap tidak ada gaya disipatif, misalnya gaya gesek dengan udara, atau gaya gesesk antara komponen sistem pegas dengan beban, atau pegas dengan setatipnya. Ishaq, 2007. Jika sebuah bandul diberi simpangan di sekitar titik setimbangnya dengan sudut ayunan ϴ dalam hal ini sudut ϴ kecil, maka akan terjadi gerak harmonis, yang timbul karena adanya gaya pemulihan sebesar F = m-g-sinϴ yang arahnya selalu berlawanan dengan arah ayunan bandul. Ayunan sederhana disebut juga bandul sederhana. Sebuah benda diikat tali kemudian disimpangkan ke titik A kemudian dilepaskan. Benda tersebut dapat bergerak bolak-balik pada lintasan yang sama. Jika sudut simpanganya kecil maka akan terjadi gerak harmonis getaran sederhana. Getaran ini dikenal dengan ayunan sederhana atau bandul sederhana.Damari, 2008. Nilai g berbeda untuk tempat berbeda untuk setiap tempat di permukaan bumi dan pada permukaan planet yang berbeda. Sebaliknya, huruf besar G berhubungan dengan gaya gravitasi antara dua benda akibat massa dan jarak di antara keduanya. G disebut konstanta universal sebab mempunyai nilai yang sama untuk untuk setiap dua benda, tidak peduli, dimaapun letaknya dalam ruang angkasa. Gaya gravitasi selalu bekerja sepanjang garis yang menghubungkan dua buah prtikel, dan membentuk pasangan aksi reaksi. Walaupun massa kedua partikel berbeda, kedua gaya interaksinya sama besar. Young, 2002 Perhitungan untuk mengkur massa bumi menggunakan konsep hukum newton tentang gravitasi yang menyatakan bahwa “ gaya tarik antar dua benda sebanding dengan massa masing masing benda dan berbanding terbalik dengan kuadrat jarak kedua benda. Untuk menentukan nilai konstanta gravitasi G kita harus mengukur gaya antara dua benda yang diketahui massanya m1 dan m2 dengan jarak r yang diketahui. Gaya ini dapat diukur dengan neraca torsi, yang digunakan oleh Sir Henry Cavendish pada tahun 1798 untuk menentukan G. setelah mengkalibrasi neraca Cavendish, dapat diketahui gaya gravitasi dan menentukan G sebesar 6,6725985 x 10-11 Dengan tiga angka signifikan, maka G=6,6785 x 10-11 Young, 2002 gravitasi Bumi merupakan sifat bumi dimana benda benda ditarik ke arah pusat bumi. Gaya tarik bumi terhadap benda-benda ini dinamakan dengan gaya gravitasi Bumi. PEMBAHASAN Percobaan ayunan matematis digunakan untuk menentukan besar gaya gravitasi bumi dan massa bumi. Besar gravitasi bumi diperoleh dari peroide ayunan. Percobaan ini menggunakan bandul yang dihubungkan dengan tali yang massanya diabaikan. Simpangan yang digunakan antara 50 dan 100 karena besar sudut yang mendekati nol dapat diabaikan dalam perhitungan sehingga sin θ = θ. Simpangan busur s = l θ atau θ=s/l , maka persamaan menjadi a= gs/l . Percobaan ayunan matematis ini menggunakan variasi panjang tali, dengan variasi panjang tali sebesar 1 m; 0,8 m; 0,6 m dan 0,4m. Massa yang digunakan sebagai beban sebesar 50 gram. Besar waktu yang diperlukan untuk 10 kali ayunan pada percobaan dengan menggunakan panjang tali 1 meter adalah 20,49 s; panjang tali 0,8 meter sebesar 18,07 s; panjang tali 0,6 meter sebesar 15,80 s; dan panjang tali 0,4 meter sebesar 13,02 s. Dari besar waktu yang diperoleh besar periode dengan rumus banyak ayunan dibagi dengan waktu. Analisis data menggunakan ralat pengamatan, sehingga diperoleh besar nilai g adalah m/s2 dengan kesalahan relative sebesar 0,05% dan ketelitian sebesar 99,95% kesesatan sebesar 1,63% dan ketepatan sebesar 98,37% dari nilai gravitasi teori sebesar 9,8 m/s2. Nilai gravitasi yang dipatkan digunakan untuk menentukan massa bumi dengan menggunakan metode Cavendish yang mendapatkan besar massa bumi sebesar 5,96 x 1024 kg, sedangkan dalam percobaan ini diperoleh nilai massa bumi sebesar 5,93 x 10 24 kg. Dari hasil tersebut kesesatan dari percobaan ayunan sederhana ini sebesar 0,5% dan ketepatan sebesar 99,5%. Hasil yang belum sama dengan nilai teori disebabkan karena keadaan tempat percobaan yang masih dipengaruhi oleh angin dan kurang tepat dari praktikan dalam mengukur sudut karena peralatan yang digunakan kurang memadai busur yang kecil. PENUTUP Percobaan ini menunjukan bahwa besar gaya gravitasi bumi dapat diketahui dan diukur melalui ayunan sederhana yang dapat diperoleh besar periode. Melalui hubungan sederhana dari teori Cavendish pula dapat ditentukan besar massa bumi. Percobaan ayunan sederhana yang sederhana dapat diterapkan dalam pembelajaran getaran dan gelombang bagi siswa, walaupun dengan kondisi laboratorium sekolah yang sangat terbatas sarana dan praarananya, karena percobaan ini dilakukan dengan peralatan yang sederhana dan mudah di dapat, meskippun percobaan dalam bentuk sederhana, percobaan ayunan sederhana menggunakan analisis data yang kompleks karena dari ayunan sederhana dapat ditentukan besarnya gaya gravitasi bumi dan mengukur massa bumi. Saran yang diberikan kepada praktikan sebaiknya praktikan melakukan percobaan di tempat yang tertutup dan mendapat sedikit pengaruh angin, karena angin dapat mengganggu percobaan karena ayunannya akan berubah sehingga sangat mempengaruhi data yang diperoleh nantinya. DAFTAR PUSTAKA Young, Hugh D. 2002. Fisika Universitas. Jakarta Erlangga Ishaq, Mohamad Fisika Dasar Edisi 2, Graha Ilmu, Yogyakarta, 2007 Jurnal Syahrul, dkk. 2013. Pengukur PercepatanGravitasi Menggunakan Gerak Harmonik Sederhana Metode Bandul. Volume 2, Perhatikanpernyataan berikut ini ! (1) Gaya yang searah dengan gerak benda. (2) Gaya yang bekerja pada benda yang bersentuhan dengan bidang. (3) Gaya yang bekerja pada benda dan bidang yang arahnya berlawanan dengan arah gerak benda. (4) Gaya yang tegak lurus dengan bidang benda. (5) Gaya yang mengarah ke pusat bumi. Percepatangravitasi bumi adalah besarnya gaya tarik bumi yang bekerja pada benda. Sementara yang dimaksud medan gravitasi seperti yang disebutkan di atas, yaitu bidang yang menyebabkan benda dengan massa tertentu mengalami gaya gravitasi atau gaya tarik. Medan gravitasi ini merupakan jangkauan suatu gravitasi. lS3D2M.
  • 7bw9ldfm5v.pages.dev/132
  • 7bw9ldfm5v.pages.dev/140
  • 7bw9ldfm5v.pages.dev/144
  • 7bw9ldfm5v.pages.dev/66
  • 7bw9ldfm5v.pages.dev/250
  • 7bw9ldfm5v.pages.dev/219
  • 7bw9ldfm5v.pages.dev/226
  • 7bw9ldfm5v.pages.dev/247
  • 7bw9ldfm5v.pages.dev/301
  • gaya gravitasi pada ayunan sederhana bekerja dengan arah